
XPANGO DRIVER EDITOR
USER MANUAL

ALL <THINGS> JOINED

ALL <THINGS> JOINED

3

Index

Introduction ..4

1 Access to the XPANGO Driver Editor5

2 Modbus and Siemens S7 templates6
2.1 MODBUS Template ...6
2.1.1 General ..6
2.1.2 Variables ..8
2.1.2.1 Variable name ..8
2.1.2.2 Section name ..10
2.1.2.3 Area ..10
2.1.2.4 Address ...11
2.1.2.5 Bit of word ...12
2.1.2.6 Data Type ...13
2.1.2.7 Signed ..13
2.1.2.8 Access Type ...14
2.1.2.9 Measurement Unit ..14
2.1.2.10 Scale ...14
2.1.2.11 Minimum and Maximum Offset ...15
2.1.2.12 Alarmed ..15
2.1.2.13 Decode ...16
2.1.2.14 Totalizer ...16
2.1.2.15 Preselected ...17
2.1.3 Digital Alarms ..17
2.1.4 Analog Alarms ...18
2.1.5 Virtual Variables ..19
2.2 Modbus Template: completion example ...21
2.3 Siemens S7 Template ...25
2.3.1 General ..27
2.3.2 Variables ..28
2.3.2.1 Area ..28
2.3.2.2 Data Block Number ...28
2.3.2.3 Data Type ...29
2.4 Siemens S7 Template: completion example ...29

3 XPANGO Driver Editor ..33
4 Guidelines and suggestions35
5 Contacts ..36

ALL <THINGS> JOINED

4

Introduction

Alleantia’s software platform is the unique Industrial Internet of Things solution for communicating with any
industrial device, in few seconds, to collect data and send parameters, to use its information in different
contexts and applications, transparently from the protocols and configuration of the devices to connect.
Alleantia Industrial IoT platform is based on the ‘driver’ concept, whereas an XPANGO file is created for every
device type, depending on its specifications. XPANGO drivers describe the syntax and the semantics of the
device information, sent and received, and are used by Alleantia IoT SCADA Server (ISS) and IoT Gateway
Server (IGS) systems for communication via serial line RS232 – 422 – 485 and Ethernet, with different
industrial protocols.

Many XPANGO drivers are available and already installed in any out-of-the-factory ISS and IGS systems,
used for configuring devices and machines (see IOT SCADA Server Installation and User Manual - Section
5.2.2.1). Other drivers are found in Alleantia’s Library of Things at http://cloud.alleantia.com/info/products.
zul, where to download updates. Furthermore, it is possible to create proprietary drivers, especially necessary
for machines and systems using Programmable Logic Controllers (PLC). The XPANGO Editor supports such
requirement.

Tutorial videos for using XPANGO Editor are available online on Vimeo: https://vimeo.com/alleantia and
Youtube https://youtube.com/alleantia.

Figure 1 – Alleantia’s Library of Things available at http://cloud.alleantia.com/info/products.zul

http://cloud.alleantia.com/info/products.zul
http://cloud.alleantia.com/info/products.zul
https://vimeo.com/alleantia
https://youtube.com/alleantia
http://cloud.alleantia.com/info/products.zul

ALL <THINGS> JOINED

5

1 Access to the XPANGO Driver Editor

To access to the XPANGO Driver editor, go to http://cloud.alleantia.com and sign in, using your email
and password or social network accounts (Facebook, LinkedIn and Twitter). If you sign in with email and
password, fill in all mandatory fields, accept the privacy policy and click Sign in. Then, you will receive email
with confirmation.

After that, login to the XPANGO Driver Editor site, go to “Create <Things>” page, where you can create driver
for any device. At this link http://cloud.alleantia.com/xmod/convert.zul it is possible to download Modbus
and Siemens S7 templates in Excel format (check for updates on added support).

Figure 2 – Alleantia Cloud access page

http://cloud.alleantia.com
http://cloud.alleantia.com/XMOD/convert.zul

ALL <THINGS> JOINED

6

2 Modbus and Siemens S7 templates

The two templates differ in the way manufacturers provide the communication addresses. The Modbus
communication protocol is a de facto standard in the industrial communication and is the most widespread
connection language in the world. The Siemens S7 protocol was developed by Siemens specifically for
communication with its PLCs.

This template should be used to get the XPANGO driver of any device regardless its type or a specific
manufacturer.

First, after opening the file, fill in the “General” tab.

The templates are preset spreadsheets, which simplify the work in creating an XPANGO driver from information
taken from the device memory map. Usually, device manufacturers provide them in the configuration manual.
PLC programmers shall provide these as part of their activity.

The spreadsheet template structure is simple, intuitive and fit for users with limited experience and education,
and do not require programming skills. Once you have understood the characteristics of every data type in the
device memory map, all you should do is properly copy information address to the template.

On the Editor page, you can download two types of templates: the Modbus template and the Siemens S7
template.

Figure 3 – Alleantia’s XPANGO Driver Editor available at http://cloud.alleantia.com/xmod/convert.zul

2.1.1 General

2.1 MODBUS Template

http://cloud.alleantia.com/XMOD/convert.zul

ALL <THINGS> JOINED

7

Figure 4 – “General” Modbus template tab

This tab contains 3 tables: Device Informations, Communication and Notes.

In the Device Informations table, insert the information of the device you want to get the driver for. Fields
marked with * are mandatory. Insert the manufacturer name, device model and choose a category from
dropdown list (B9 cell).

In the Communication table insert the device’s type of communication. In the first row specify whether the
device is equipped with a serial port RS485, RS232 or not. If it has, select “TRUE” from the dropdown list. If
the device is not equipped with a serial port, select “FALSE” or just leave the field empty as “FALSE” is the
default value.

Be sure to select the right communication port for the device as several device models are similar and
differ for its communication capability.

This also applies to the second row of the Communication table. Specify whether the device is equipped with
Ethernet port. Select “TRUE” if it has or leave empty if it does not.

In the third row set the delay time between requests to device. Leaving the field empty, you set the default
value at 100 ms.

Non-standard polling frequency should be carefully defined for the device, in consideration of number of
variables to collect, variables update and its use, to avoid gateway overload as well as device overload.

In the last but one row enable or disable the Bach data Transmission function, that is transmission of continuous
blocks containing more than one data. In this way, it is possible to send more addresses and read or write them
in a single transmission. This procedure, so called Bach Optimization, increases the speed of communication
when sending only one data at a time.

Finally, fill in the table specifying the Word order, essential parameter for computers to store data with a size
larger than one byte (1 byte = 8 bit). Specifying this field is important if double word or quad word data type
is sent (1 Word = 2 bytes = 16 bit).

2 Modbus and Siemens S7 templates

ALL <THINGS> JOINED

8

From the dropdown list, you can select either Big Endian order or Little Endian order. In Big Endian, the most
significant byte is stored first and the least significant byte is stored at last place. Little Endian works exactly
on the contrary.

For example, hexadecimal number 0x01234567 in Double Word (32 bit) format will be represented in two
following formats (two bold digits represent the most significant byte):

As can be seen in the above picture, Little Endian order stores the hexadecimal number with the most
significant numbers (0x01) in the higher address (3), meanwhile Big Endian order does just the opposite;
the most significant numbers are in the address 0, while those least significant numbers (23, 45, 67) will be
stored in the lowest memory addresses.

Among these two orders, Little Endian is the most used. Verify in the device technical manuals which order
has been chosen.

Information about type of the device and its components can be inserted in the table Notes, which is optional.

Once the “General” tab is filled in, move to “Variables” tab. During our communication with the device we can
“ask” it about the state of all the variables that we are going to register in the following tab. First, every variable
has an identification code represented in the ID column, which cannot be modified.

In the Variable name column insert the variable name. First, the name should be unique. Indeed, if two variables
in the same section have identical variable name, the mapping of XPANGO driver will not be successful.

2.1.2 Variables

2.1.2.1 Variable name

2 Modbus and Siemens S7 templates

ALL <THINGS> JOINED

9

Figure 5 – Variables tab: error generated by multiple variables with the same name

Figure 6 – Variables tab: resolving the error posed by the presence of more variables with the same name

If two variables have the same name, there are two ways to solve the problem.

The first one is to insert two different numbers or letters in the end of their names. The second is to insert two
variables with the same name in different sections (see 2.2.2.2).

The variable name should also clearly identifiable, as it will be displayed in the IoT-SCADA Server graphic
interface once the XPANGO driver is uploaded and the device is configured.

2 Modbus and Siemens S7 templates

ALL <THINGS> JOINED

10

2.1.2.2 Section name
It is possible to group the variables in more sections specifying a Section name for each of them. Such
subdivision will be displayed in the IoT-SCADA Server graphic interface, once the XPANGO driver is uploaded
and the device is configured.

The sections grouping different variables shall not be inserted in the Section name column. First, you have to
go to the Sections tab, which has two columns: ID and Section name. Once the section names are created, in
the Variables tab a variable can be associated to a section, selecting it from the dropdown list. The dropdown
list contains sections from the Sections tab, sorted by their IDs.

The variables association into sections is not mandatory for the mapping of XPANGO file. It may be useful for
the user to manage numerous variables.

Figure 7 – Sections Tab of Modbus template

2 Modbus and Siemens S7 templates

In this column insert the memory area, or register, where the variable are inserted.

The Modbus protocol divides communication data in registers. A register to which a variable belongs depends
on the type of information the variable carries.

There are 4 kinds of registers:

1. Coil (or Discrete Output);
2. Discrete Input;
3. Input Register;
4. Holding Register.

2.1.2.3 Area

ALL <THINGS> JOINED

11

Modbus Data types e Address Space

Register Access Space Occupied Address

Coil Read & Write 1 bit 00001 - 09999

Discrete Input Read Only 1 bit 10001 - 19999

Input Register Read Only 16 bits 30001 - 39999

Holding Register Read & Write 16 bits 40001 - 49999

Table 1 – Addresses range of different Modbus Registers, access mode, type of supported data and their dimensions

2 Modbus and Siemens S7 templates

Area field should be filled for every variable in the template, otherwise XPANGO Drive Editor will not
complete the mapping.

Coils are 1 bit registers, used to control discrete outputs, and can operate both in read and write modes.

Discrete Input are also 1 bit registers, they store only input data, therefore are read only registers. Being the
1 bit registers, coils and discrete inputs contain only the Boolean data type.

Input Registers and Holding Registers are both 16 bit registers, thus able to contain data of one word size.
The first type manage only inputs data, so are read only registers. The second type are universal registers as
they can contain both input and output data, configuration data and many others. In addition, they are Read
& Write registers.

Many manufacturers indicate the register data type in the Modbus tables. If this information is not available, by
analysing its Modbus address it is possible to derive in what memory area the variable data are saved. Most
of time, the manufacturers implement the ‘Modicon rule’ developed by the inventors of Modbus protocol. Such
rules provide a range of addresses for every register type. Thus, by understanding in which addresses intervals
the Modbus Address is inserted, you derive the variable what register types.

2.1.2.4 Address
In the Address column, insert the Modbus address for the variable that you intend to read or modify. Every
variable shall have a different address. There is no universal mode to provide the Modbus addresses. Some
manufacturers implement the Modicon rule, some provide the address in hex format, others implement their
own modes. Devices’ technical manuals usually provide the necessary information.

Modbus Address can have values between 0 and 65535, so between 0 and FFFF in hex format. The address
value in the template shall be only in decimal format only. If the manufacturer indicates the addresses in
hexadecimal format, it is necessary to convert the address values. By the way, remember that the address first
digit indicates the register type to which the variable belongs (0=Coil, 1= Discrete Input, 3=Input, 4=Holding,
see Section 2.1.2.3).

Address are represented by numbers from starting from first, with one or more zeros. For example, Figure 8

ALL <THINGS> JOINED

12

2 Modbus and Siemens S7 templates

Figure 8 – Modbus Map of device ADAM-6024 of Advantech

shows the Modbus Map for Advantech ADAM-6024 device. The variable DI Value Channel 0 has address
00001, so is a variable belonging to Coil (0X) register, and has address 1. Meanwhile the variable AI Value
Channel 0 has address 40001; so, it is a variable that belongs to Holding (4X) and has address 1.
Select respectively Coil and Holding in the Area column and in the Address column insert 1 for each variable.

2.1.2.5 Bit of word
The field bit of word defines the register bit in which data will be stored. This information is necessary if, for
example, you want to represent Boolean data type (1 bit) in Holding or Input Registers, or in 16 bit registers.
Indeed, there is no sense to specify the stored data’s bit of word inside Coil or Discrete Input registers (in this
case, the bit of word will be always 0, or the first and only bit!).

As you remember, a Holding register can host a whole word, the first bit is 0, while the last one is 15. In case
you want to insert more Boolean variables inside a 16-bit register, these will have the same Address but will
differ by their bit of word value.

The sample extract from Modbus map of Advantech ADAM-6224 is given below. State of digital inputs (DI
Event Status) will use an address of Holding type for every digital input (Channel from 0 to 3). From the note,
provided by the manufacturer, you understand how the first bit of word (bit 0) is responsible for Unreliable DI
Value boolean type, the second bit of word (bit 1) is responsible for Safety Value Triggered Boolean and so
on. In Figure 9 you may see an example of how to fill in the template.

ALL <THINGS> JOINED

13

2 Modbus and Siemens S7 templates

Figure 9 – Modbus Template of ADAM-6024 (on top) and the extract from Modbus map with data to fill it in

2.1.2.6 Data Type

2.1.2.7 Signed

Data Type column specify variable data type. From the in-cell dropdown list you can select following
representation formats: Boolean, Integer, Double Integer, Quad Integer, Float, Double Float, BCD, Double
BCD.

Coil or Discrete Input registers can collect only one bit, Data Type can only be Boolean since only one bit is
enough for such representation. Holding registers can host Integer or Float data types since they have a 16-bit
size. Double Integer and Double Float data types are allocated into 2 registers of 16-bit memory (e.g. Holding)
while Quad Integer data type on 4 registers (16 bit each).

The Signed field can take only two values, TRUE or FALSE, which can be set from the in-cell dropdown list.
If the number that will represent the variable is a number with sign, the Signed field will take the TRUE value,
otherwise you may select FALSE value or leave it empty (Default: FALSE).

Please notice that the field shall be kept FALSE for variables in Coil or Discrete Input registers (variables in
such registers cannot be represented with sign since this requires one bit of memory, that would use the whole
register). It is necessary to set value to TRUE for Float variable types since these are signed numbers.

ALL <THINGS> JOINED

14

2 Modbus and Siemens S7 templates

2.1.2.9 Measurement Unit

This column is optional for a successful XPANGO driver mapping, the measurement unit of the variable
concerned. The measurement unit specified here will be then displayed in the IoT-SCADA interface together
with the monitored variable value. For example, Volt, Ampere and Watt are used for voltage, current and power
(depending on the power). Often the manufacturer indicates measurement units, but it is not necessary to
respect them.

For example, the device can provide you with the value of exported active power from an inverter in W. If a
device has power of many kW, it might happen that a too large value is displayed, which is not easy to display.
If you want the output power from inverter expressed in kW, specify this measurement unit in the Measurement
Unit column and a multiplication factor equal to 0,001 in the Scale column (see Section 2.1.2.9).

2.1.2.8 Access Type
Access Type column define the access type to the variable. There are three types of access permissions:
Write, Read and Read/Write. Read and Write access types grant the ability to read or modify a variable value,
respectively. Read/Write access grants the ability both to read and modify a value.

First, the Access Type is identified by the register of inserted data (see Section 2.1.2.3). If data is inserted in
R/W register, it will be for you to decide whether enable or not to read and/or modify a variable value. The
access attribute to give to the variable is usually specified in the manufacturers’ Modbus map.

2.1.2.10 Scale
In this column specify the multiplication factors to apply to the variable value before showing it to the user. It is
necessary to fill in this field if you want the measured data from the device to be displayed in a measurement
unit set by you and not by the manufacturer.

In Figure 10 you may see an example of extract from Modbus map of Seneca S504C-6-MOD-MID energy
meter.

Figure 10 – Modbus map of Seneca S504C-6-MOD-MID energy meter

ALL <THINGS> JOINED

15

Looking at the values of provided addresses according to the IEEE standard, it can be seen how Imported
active energy in 3 phases is expressed in Wh. To display the variable in kWh, insert multiplication factor equal
to 0,001. To display in MWh insert multiplication factor equal to 1000.

The factors inserted in the Offset column are added to the measured variable value of the device before
showing it to the user. Fill in these fields when maximum and minimum values that the variable will take are
known. These two values will be displayed in the IoT-SCADA user interface, on the row corresponding to the
variable under the min and max headings.

To get an idea of how it can be useful to set these parameters, here is an example.

Imagine that you can communicate with a pyranometer whose output signal is a current proportional to the
irradiation, measured by the device. At night, with irradiation equal to 0 W/m2 the current output from the
pyranometer will be 4 mA, meanwhile the current corresponding to the maximum measurable irradiation (e. g.
1000 W/m2) is equal to 20 mA.

To enable the user to read directly the irradiation value in W/m2 and the output current value of the pyranometer,
implement the following relation:

kWh
kWh
MW

Figure 11 – Modbus template of Seneca S504C-6-MOD-MID energy meter: measurement unit and applied scaling function

2.1.2.11 Minimum and Maximum Offset

In this case, to display the irradiation value set a Scale factor equal to 62,5 (1000/16) and Offset factor
equal to -4. Minimum and maximum values that the variable could take are 0 W/m2 and 1000 W/m2,
respectively.

Please note that it is possible to set such parameters directly from the IOT SCADA Server interface (see IOT
SCADA Server Installation and User Manual - Section 5.2.3).

2 Modbus and Siemens S7 templates

2.1.2.12 Alarmed

The fields of Alarmed column are Boolean, having two values TRUE and FALSE. The field will be set as TRUE
if the variable concerned has an alarm, otherwise set it as FALSE or leave empty.

After setting TRUE in the Alarmed cell of a Boolean data, the variable name will be copied to the Digital Alarms
tab; for all other data types, it will be copied to the Analog Alarms tab. For further details refer to Sections 2.1.2
and 2.1.4 of this manual.

ALL <THINGS> JOINED

16

2.1.2.13 Decode

2.1.2.14 Totalizer

In the Decode column it is possible to match the value obtained by the variable and a numerical or alphanumeric
value to display. To do it, insert in the cell Variable Name 1 = User Value 1, Variable Name 2 = User Value = 2
and so on. Every field should be separated by a comma. In this way when the variable will obtain the specified
value, the corresponding value or message will be displayed.

The fields in the Totalizer column are set TRUE if the variables values will be continuously increasing, and
you want to create reports for daily, monthly analysis of such measures. For example, it makes sense to
activate such function for monotone growth measures like produced energy, whereas it is useless to apply it
to produced power measure, since it can increase or decrease during the machine operations.

Besides the report for a single measure, it is possible to compare the difference between two or more totalizer
measures during the reporting period or to compare the same measure with separate reporting periods. For
further details refer to Section 6.5 of IOT SCADA Server Installation and User Manual.

For example, in the Totalizer column set TRUE value to the variables System Imported energy and System
Exported energy in the Modbus template of Seneca S504C-6-MOD-MID energy meter.

Figure 12 – Modbus template of S504C-6-MOD-MID energy counter of Seneca: totalizer variables

2 Modbus and Siemens S7 templates

In the IoT SCADA Server interface, go to Report tab, click button in Parameters table, select the
variables of device to make a report (see IOT SCADA Server Installation and User Manual – Section 6.5).
You can only select the variables with the Totalizer field set as TRUE.

ALL <THINGS> JOINED

17

2.1.2.15 Preselected

2.1.3 Digital Alarms

While monitoring the device, it might be useful to hide some variables. To do so, set the Preselected cell to
FALSE. To show these variables again, set the field to TRUE. This last operation can be done directly from the
IoT-SCADA Server interface (see IOT SCADA Server Installation and User Manual – Section 5.2.3). Please
note that the default value of Preselected field is TRUE.

In Digital Alarms tab, for all Boolean variables the field Alarmed of General tab should be set to TRUE (see
Section 2.1.2.12).

2 Modbus and Siemens S7 templates

Figure 13 – IoT SCADA Server interface: list of the variables to generate a report

Figure 14 –Variables tab (right) and Digital Alarms (left) of the Modbus template

ALL <THINGS> JOINED

18

At this point, ID number fields will be highlighted in red, while Variable name and Section name fields of Digital
Alarms tab will be filled in automatically, in the rows corresponding to the selected variable IDs.

Digital alarms are Boolean type, having only two values TRUE and FALSE. In that regard, set the field of Alarm
Condition column to TRUE or FALSE.

Giving the example of the Modbus template of ADAM – 6024, Advantech’s device, we report with an alarm
the situation when Digital Input 0 is inoperative or inactive. In this case, we should set Alarm Condition field
of DI Value Channel 0 to FALSE. In doing so, the user will be warned in case the chosen Boolean variable
has a value equal to zero.

Then, fill in Delay ON and Delay OFF fields.

Insert time interval in Delay ON field (in milliseconds), between alarm occurrence and its notification. For
example, inserting value 100 in Delay ON field, from the moment when the monitored variable value will be
assigned the value set in the Alarm Condition column and the moment when the alarm is notified, will pass
exactly 100 ms. This feature is useful to avoid the “false alarms” notification. If you decide to set this time to
0 ms, the user will receive a warning whenever the variable value is equal to the one set in Alarm Condition,
even if it is temporary and not a real anomaly. Setting “reasonable” time of Delay ON, the device will inform
you only about persisting malfunctions.

On the contrary, to be sure that an anomaly is resolved, it is necessary to consider a certain time interval
between the moment when the monitored variable value returns to its normal value (different from the one
set in Alarm Condition) and the moment when the alarm notification is cancelled. Insert this time interval (in
milliseconds) within Delay OFF column.

Finally, in Alarm Description column, it is possible to insert a string to describe the type of alarm notification and
the causes that created anomaly. The message in the cell will be displayed in IoT-SCADA Server interface.

2 Modbus and Siemens S7 templates

2.1.4 Analog Alarms

Unlike the alarms described in the previous section, analog alarms have a more sophisticated logic. An analog
alarm compares two values through a logic operator (=, !=, >, <, etc.) and is notified if the specified condition
is achieved. Since the variables with 0 or 1 values are compared, in Analog Alarms tab will appear all non-
Boolean variables with Alarmed field set to TRUE.

ALL <THINGS> JOINED

19

Figure 15 – Variables tab (right) and Analog Alarms (left) of Modbus template

As in the case of Digital Alarms, also here Variable name and Section name are filled in automatically and IDs
concerned are highlighted in red in General tab.

In this case, set the alarm condition, modifying fields of Alarm Operator and Reference Value columns. In
first field, select an operator from the in-cell dropdown list, while in second field insert the value that will be
compared with the monitored variable.

For example, if you want an alarm notification when Al Value Channel 0 has a value different from 10, choose
the “! =” symbol in Alarm Operator column and insert value 10 in Reference Value column.

Figure 16 – Analog Alarms tab: types of Alarm operators

Likewise, for Analog Alarms it is possible to set time of Delay ON, Delay OFF and display a string with the
description of alarm (see Section 2.1.3).

2 Modbus and Siemens S7 templates

2.1.5 Virtual Variables

In Virtual Variables tab, it is possible to create customized variables, based on device’s standard measures
defined in the Variables tab.

Apart from the virtual variable name and the section it belongs to, insert the variable’s data type. From the

ALL <THINGS> JOINED

20

Figure 17 – Virtual Variables tab: implementing of the analytic expression of the virtual variable

2 Modbus and Siemens S7 templates

dropdown list of Data Type column, it is possible to choose from two formats: Boolean and numerical.

In Expression column, insert numerical expression to achieve the virtual variable, based on the device standard
variables. Insert the expression, referring to the variables from Variables tab with the expression “$ID variable”.
Do not put “=” sign before the formula (different from Excel formulas). The rest of the columns have the same
characteristics as the ones in Variables tab (see Section 2.1.2).

For example, you want to verify that System Active Power variable provided by Seneca S504C-6-MOD-MID
energy meter is correctly calculated.

For this, create a virtual variable called Calculated active power and give it the following formula:

Calculated active power =I * V * cos φ

where I is system current, V is system voltage and cos φ is system power factor.

The formula will be implemented in the cell of Expression column in the following way:

$7 * $12 * $16

Looking at the Variables tab, you can notice how ID 7, 12 e 16 correspond to the variables (VΣ • System
voltage), (AΣ • System current) and (PFΣ • System power factor).

If the value of Active calculated power and the one provided by the device correspond, the energy counter is
working correctly.

The created virtual variables will be displayed together with the other variables in the IoT SCADA Server
interface.

ALL <THINGS> JOINED

21

Figure 18 – Created virtual variable in the IoT Scada Server interface

2.2 Modbus Template: completion example
We provide in the following a full example of Modbus template completion necessary to create the XPANGO
driver of Seneca S504C energy meter.

First, download the device’s Modbus map from the company’s official website here:
https://www.seneca.it/en/. Go to the Downloads tab and download “Modbus - LAN communication
manual.pdf”.

Figure 19 - Official website of Seneca where you can download the Modbus map of S504C-6-MOD-MID energy counter

2 Modbus and Siemens S7 templates

The device’s Modbus map, provided by the manufacturer, include several tables.

The manufacturer provides two register sets, numbered with 0 and 1, respectively. The register set 1 is
available only for counters with integrated Modbus, counters with integrated Ethernet or RS485 modules with
firmware release 2.00, while the Set 0 is available for any device. In the example, we will use the register set
0 as it is “universal”.

https://www.seneca.it/en/

ALL <THINGS> JOINED

22

Figure 20 – Modbus map extract of Seneca’s energy counter S504C-6-MOD-MID (Register set 0)

Parameter: contains names of the variables to be read.

F. code (Hex): function code in hex format. It defines the command type: reading (Function code $01/$03/$04)
or writing (Function code $10).

Sign: if this column is checked, the read register value can have negative sign. If not checked, the read
register can have only positive sign.

The manufacturer provides two categories of Modbus addresses. The first category represents values in
integers, the second uses floating-point representation or 32-bit/sec float according to the IEEE standard. We
choose the second category since it is a universal standard representation.

Both categories are divided in 3 sub columns:

Register (Hex): register address in hex format.

Words: number of word to be read / written for the register (length, 1 word=16 bit).

M.U.: measuring unit of parameter.

Referring to S504C-6-MOD-MID energy counter with built-in RS485 port, we will fill in the Modbus template.

In General tab, insert the model and communication mode, as in Table 2.

2 Modbus and Siemens S7 templates

ALL <THINGS> JOINED

23

Table 2 - Completion example of General tab of the Modbus template of S504C-6-MOD-MID Seneca’s energy counter

It Is possible to communicate with S504C-5-MOD-MID energy counter only via serial port (Serial
Supported=TRUE), lacking Ethernet port for LAN communication (Ethernet Supported=FALSE). In our case,
Delay between requests field was not filled in, however, the default value is 100 ms. Batch function was
disabled (Batch enabled=FALSE).

After that we can fill in Variables tab, starting from the first variable in the map “V1 • L-N voltage phase 1”.

As a variable name, we can copy the one from Parameter column of Modbus map.

The register area is not clearly specified, however the variable is stored at a 2-word register (32 bit), so it
cannot be Coil or Discrete Input register since their size is 1 bit. Consequently, it may be Holding or Input
register.

Recalling that the first register type is Read/Write, while the second contains only Read data type (see
Section 2.1.2.3), we can conclude that it is Input Register function code is equal to $03/$04, encoding for
Read register. Nevertheless, it is possible to specify Holding as area, without compromising XPANGO driver,
since Holding register can contain any data type: R, W or R/W.

As specified in 2.1.2.3, usually it is possible to understand immediately the register area from the Modbus
address of the variable to be read. Converting the address from hex format (HEX=1000) into decimal, we
find the value of 4096. According to the ‘Modicon Rule’, address value between 0 and 9999 is Coil (see
Section 2.1.2.4) but it cannot be reconciled with the fact that the variable “V1 • L-N voltage phase 1” requires
32 bit. In this way, you can understand that the addresses are provided according to a different standard, and

2 Modbus and Siemens S7 templates

ALL <THINGS> JOINED

24

consequently it is impossible to identify the memory area where the register is stored.

Insert the converted value into decimal into Address column.

Leave Bit of word field empty as it is necessary to specify the bit only in case if, for example, more Boolean
data should be stored in 16-bit registers.

Data Type is Float, since IEEE standard uses representation in floating point.

In Signed column, select TRUE or FALSE according to the indications in Sign column of the Modbus map. In
this case, we set to FALSE.

The fields of Access type column can be left empty, as they are set to Read by default, and in this case the
variables are Read only (cod. $03/$04).

Specify the measuring unit, in this case it is Volt (V).

All other columns can be left empty, since no additional information is provided by the manufacturer. Set
Alarmed column to TRUE if you want to link an alarm to the measure. We leave Totalizer and Preselected
columns set to default (see Sections 2.1.2.12, 2.1.2.14, 2.1.2.15) as this is not a measure represented by
monotonic increasing function (measure cannot be combined) and we want its value to be displayed in the
IOT SCADA Server interface.

This should be done for all variables in the Modbus map. The list of variables from Excel file will be displayed
in the IOT SCADA Server interface, after uploading XPANGO file and configuring the device to communicate
with.

2 Modbus and Siemens S7 templates

Figure 21 – IoT SCADA Server interface: List of variables of the configured device

ALL <THINGS> JOINED

25

2.3 Siemens S7 Template

This template was developed to create the XPANGO driver of PLC Siemens S7.

The data types within the Excel file’s columns shall not be described again, since they are the same as in the
Modbus template (see Section 2.1). Having its own communication protocol, Siemens S7 template differs from
the previous template.

Before connecting Siemens S7 device, check whether the elements of the TIA, listed in the following paragraphs,
are enabled:

S7 1200/1500

An external device can access the CPU S7 1200 / 1500, using “base” S7 protocol, working only as HMI, i.e.,
only basic data transfers are allowed.

To access a DB, some additional PLC settings are required.

1. It is possible to access global DBs only.
2. Optimized access to the block must be deactivated.
3. The level of access must be “full” and the “connection mechanism” must be GET / PUT.

These settings in TIA Portal are explained below.

DB properties.

Select the DB on the left side, under “Program blocks” and click Alt-Enter (or select “Properties...” from the
menu)

Uncheck “Optimized block access” (it is checked by default).

2 Modbus and Siemens S7 templates

ALL <THINGS> JOINED

26

2 Modbus and Siemens S7 templates

Protection

Select the CPU project on the left and click Alt-Enter (or select “Properties...” from the menu).

In Protection section, select “Full Access” and check “Permit access with PUT/GET”, as shown in figure
below.

ALL <THINGS> JOINED

27

2 Modbus and Siemens S7 templates

2.3.1 General
The first difference is in Category field of General tab. There are 3 categories of devices: PLC, Numerical
control and Other. Select first category if it is programmable logic controller (PLC), the second one for
Computer numerical control (CNC) and the third category if the device does not fall under two categories.

Delay Between Request is set to 10 ms by default, so this the time elapsing from a request and the next one,
if the field is empty.

Finally, in S7 template it is not possible neither to enable Batch data transmission, nor to choose from Big and
Little Endian word orders, since Siemens S7 PLCs always use Big Endian order.

Figure 22 – General tab of the Siemens S7 template

ALL <THINGS> JOINED

28

2.3.2.1 Area
In this column specify the memory area where he variable will be stored. Siemens PLC’s memory is divided in
different areas, each contains groups of variables with a specific function. In the dropdown list of Siemens S7
template contains 6 different memory areas:

• Input (IPI);
• Output (IPU);
• Marker;
• Timer;
• Counter;
• Data Block.

IPI and IPU memory areas stores, respectively values of logical inputs at the beginning of the cycle and values
of logical outputs in the end of the cycle.

Marker area is for the bit variables and can be programmed.

Timer area provide timers, elements able to count time through increases (dt=1ms/10ms/100ms).

In Counter area insert counters, that counting events on an external signal. There are up counters, down
counters and bidirectional counters.

Finally, there is Data Block global area for PLC communication. In this area, there are the variables stated by
the PLC programmer, which can be read and monitored after creating the XPANGO driver.

2 Modbus and Siemens S7 templates

2.3.2.2 Data Block Number

Data Block Global area of a PLC is divided in Data Blocks. Data Block is a portion of memory that can collect
data of any type and dimension (bit, byte, word, etc.).

The physical dimensions of a Data Block are not preset but can be chosen by the programmer. Usually it is
1024 bit for PLC Siemens S7-300 and S7-400. The total dimension is divided in many 8-bit Data bytes. For
these PLCs every Data Block contains 128 Data bytes.

2.3.2 Variables

The structure of Variables tab is identical to the one in the Modbus template. Every variable has a numerical
ID code in ID column which cannot be modified. Furthermore, there are differences in the in-cell dropdown lists
of Area and Data Type columns and there is a new column called Data Block Number.

ALL <THINGS> JOINED

29

Figure 23 – Memory structure of a PLC

2 Modbus and Siemens S7 templates

Every portion of memory contains variables data and have an ID number, that is specified in Data Block
Number column. This field should be left empty if the variable if not in Data Block Global memory area.

2.3.2.3 Data Type

Data Type column values are selected from a dropdown list. The data types Bool, Int and Dint stand for
Boolean, Integer and Double Integer. Other types are:

• Byte: number in hex format (8 bit);
• Char: stores a single character in ASCII format (1 bit);
• Word: fixed-sized decimal number (16 bit);
• Double Word: fixed-sized decimal number (32 bit)
• Real: floating point number in IEEE format (32 bit)
• String: sequence of alphanumeric characters;
• Date: date in IEC format with one day intervals.

2.4 Siemens S7 Template: completion example

In the following we give a complete example of a Siemens S7 Template for Simatic S7-300 PLC. The table,
containing different variables to read, was extracted from the Siemens Step 7 software.

ALL <THINGS> JOINED

30

Figure 24 – Sample list of variables addresses for a Simatic S7-300 Siemens PLC, extracted from Step 7 software

Useful information to fill in Excel template are in ADDRESS, TYPE, COMMENT and NOTE columns.

In COMMENT column, there is a variable name that we will monitor so we copy this information to Variable
name column.

In ADDRESS column, there are communication addresses, in Siemens S7 communication protocol format. To
understand it, we analyse every part:

DB70.DBW0

First 4 digits of the address provide Data Block Number where the WORD ALLARMI 01 variable is stored.

Last 4 digits after the dot, give information on memory area, containing the variable, the size of variable data
and the number of Data byte from the Data Block.

Every area of PLC has its own ID prefix, consisting of 2 letters (in this case DB). The third letter represents
data size (see Table 3).

2 Modbus and Siemens S7 templates

ALL <THINGS> JOINED

31

Table 3 – Prefixes used for variables addresses of PLC Siemens S7

This address refers to WORD ALLARMI 01 variable from Data Block Global memory area and represents
single-word data in first Data byte (DBW0) in Data Block n° 70 (DB70).

This last information shows that the next variable is not contained in Data byte n° 1 but in n°2. Consequently,
WORD ALLARMI 01 variable uses 0 and 1 data bytes.

Knowing the data size is not enough to identify the data type. For example, both Double Word (DW) and
Double Integer (DInt) use 4 bytes. Insert into Data type column of Siemens S7 template the information from
TYPE column of table with addresses. In this case, this variable is Integer (Int).

Figure 25 – Example of a 16-bit variable in Siemens S7 template

2 Modbus and Siemens S7 templates

The NOTE column includes the scale to multiply the actual value of the variable before displaying. For
example, “3 decimals” correspond to 0,001 scale (1 decimal = 0,1, 2 decimals = 0,01). As well as for Modbus
template, the scale should be inserted in Scale column.

ALL <THINGS> JOINED

32

Figure 26 – Example of Siemens S7 template: scale

The address of this Boolean data type in interesting:

DB70, DBX190.1

In this case, to identify position of the data in memory, it is necessary to specify the number of bits that the
data contains. This information is after the dot, which can have value from 0 to 7 (also here enumeration starts
from 0). Insert this value into Bit column of Siemens S7 template.

To sum up, the following address refers to variable called LIVELLO MINIMO SERBATOIO DEL VUOTO #1
in the Data Block Global and is represented by a 1-bit data (DBX) from Data Block n° 70 (DB70), exactly in
2° bit del 191° Data byte (190.1).

Knowing the data size is enough to identify the data type, since among the data types of PLC, only Boolean
has 1-bit dimension. In this case, TYPE column contains Bool.

The template variables will be displayed in IOT SCADA Server interface in the same order after uploading the
.xmod file and connecting the PLC.

Figure 27 – Example of Boolean variable in Siemens S7 template

2 Modbus and Siemens S7 templates

ALL <THINGS> JOINED

33

Figure 28 – IoT SCADA Server interface: variables of PLC Siemens displayed after configuration

2 Modbus and Siemens S7 templates

Create driver by uploading the excel file here: http://cloud.alleantia.com/xmod/convert.zul.

Click Upload File Excel button, select the Excel file of Template, then click Open.

3 XPANGO Driver Editor

Figure 29 – XPANGO Driver Editor: uploading the template in Excel format to convert it in XPANGO driver

http://cloud.alleantia.com/XMOD/convert.zul

ALL <THINGS> JOINED

34

3 XPANGO Driver Editor

The XPANGO Driver Editor will convert the .xlxs file into .xmod file. The procedure is the same for both
Siemens S7 template and Modbus template.

If mapping file creation is successfully completed, the .xmod file will be downloaded automatically.

For updates on available Editor Tools and mapping of industrial devices, please refer to par. 4.

For a successful communication with the device, its XPANGO driver should be in IoT SCADA Server’s Library
of Things.

Therefore, first upload .xmod file to IoT SCADA Server (see IOT SCADA Server Installation and User Manual
- Section 5.5.1), then set communication parameters of the device (see IOT SCADA Server Installation and
User Manual - Section 5.2.2.1).

Figure 30 – XPANGO Driver Editor: mapping file creation successfully completed and auto download of XPANGO driver

ALL <THINGS> JOINED

35

4 Guidelines and suggestions

If the file contains errors, “The uploaded file contains some errors” message will be displayed and XPANGO
Driver Editor will auto download errors.xlxs file.

Figure 31 – XPANGO Driver Editor: Errors in Modbus template and auto download errors.xlsx file

In this file, the cells with errors are highlighted and contain useful notes for problem solving. This system helps
to find errors quickly (Modbus map has a lot of rows) and provides instructions to use it.

IoT SCADA Server devices can read and show a number of variables, which depends on the license uploaded
to the device. It is recommended that you insert only necessary variables or disable the ones you do not need
at the moment, setting Preselected cell to FALSE.

Organize the variables in sections to make IoT SCADA Server interface more readable, especially if you have
a large number of variables.

Use only Microsoft Office programs to fill the templates. For example, if you use Apache OpenOffice, it will be
impossible to conclude the mapping because of incompatibility.

XPANGO drivers for Siemens S7 PLCs created by XPANGO Driver Editor might be incompatible and,
consequently, impossible to configure, with IoT SCADA server devices with software version lower 3.4.1.

ALL <THINGS> JOINED

36

5 Contacts

Alleantia s.r.l.

www.alleantia.com

Registered offices: Via Tosco Romagnola, 136 56025 Pontedera (PI)
Operating headquarters: Via Umberto Forti, 24/14 56121 Pisa
VAT code/Tax code: IT 02011550502

info@alleantia.com

ALL <THINGS> JOINED

37

ALL <THINGS> JOINED

Alleantia s.r.l.
www.alleantia.com

Registered offices: Via Tosco Romagnola, 136 56025 Pontedera (PI)
Operating headquarters: via Umberto Forti, 24/14 56121 Pisa

VAT code/Tax code: IT 02011550502

Tel: (+39) 050 9911933
Fax: (+39) 050 9655139

@: sales@alleantia.com M
-X

M
O

-0
71

8-
EN

	Introduction
	1 Access to the XPANGO Driver Editor
	2 Modbus and Siemens S7 templates
	2.1 MODBUS Template
	2.1.1 General
	2.1.2 Variables
	2.1.2.1 Variable name
	2.1.2.2 Section name
	2.1.2.3 Area
	2.1.2.4 Address
	2.1.2.5 Bit of word
	2.1.2.6 Data Type
	2.1.2.7 Signed
	2.1.2.8 Access Type
	2.1.2.9 Measurement Unit
	2.1.2.10 Scale
	2.1.2.11 Minimum and Maximum Offset
	2.1.2.12 Alarmed
	2.1.2.13 Decode
	2.1.2.14 Totalizer
	2.1.2.15 Preselected

	2.1.3 Digital Alarms
	2.1.4 Analog Alarms
	2.1.5 Virtual Variables

	2.2 Modbus Template: completion example
	2.3 Siemens S7 Template
	2.3.1 General
	2.3.2 Variables
	2.3.2.1 Area
	2.3.2.2 Data Block Number
	2.3.2.3 Data Type

	2.4 Siemens S7 Template: completion example

	3 XPANGO Driver Editor
	4 Guidelines and suggestions
	5 Contacts

